## Applications Using Dedalus

This gallery contains images and videos from research using Dedalus. Visit our vimeo page to see more of these and other applications.

If you've used Dedalus in your work and would like to contribute to the gallery, please let us know!

### Active Matter on the Sphere

A simulation of a phenomenological model of a fluid driven by active stresses, such as collective microbial swimming, on the surface of the sphere. The model is a generalized form of the incompressible Navier-Stokes equations with a linear active stress given by a composition of Laplacians, which injects energy over a finite bandwidth. The simulation utilizes spin-weighted spherical harmonics to maintain sparsity and correctly capture the regularity of different tensors at the poles. See Mickelin et al. 2018 (doi.org/10.1103/PhysRevLett.120.164503).

Contributed by Keaton Burns

### Orszag-Tang Vortex

This is a simulation of an Orzang-Tang vortex, a common test problem for magnetohydrodynamic codes. The compressible MHD equations are being solved on a doubly-periodic 2D domain with a 4096 modes in each dimension. The simulation includes dissipation, allowing the spectral method to regularize and resolve the resulting shocks.

Contributed by Daniel Lecoanet

### Obstacle in a Channel Flow

This is a simulation of an incompressible flow around an ellipsoidal obstacle at moderate Reynolds number (Re ~ 100) in two dimensions. The flow is visualized by advecting a passive tracer concentration field which is continually released from a localized source on the left side of the domain. The obstacle is implemented with a volume-penalized immersed boundary method.

Contributed by Eric Hester

### Buckling Elastic Sheet

The buckling instability of a thin elastic sheet. In a certain limit, this is also equivalent to the dynamics of the Magnetorotational Instability (the MRI common in astrophysics). A particular interesting things about this system is that the nonlinear feedback is completely non-local; through an integral of the solution over the whole domain. See Vasil 2015 (doi.org/10.1098/rspa.2014.0699).

Contributed by Geoff Vasil

### Nonlinear Schrodinger Network

A simulation of the nonlinear Schrodinger equation on a topologically complex graph. Continuity of the solution and Kirchhoff's law are imposed at each vertex. The disconnected vertices satisfy Dirichlet boundary conditions. Each edge contains the same equation form with possibly different parameters. The initial condition is a single soliton on a single edge. The grey coloring shows |psi|^2. Conservation of probability implies that the area of the grey remains fixed as the waves disperse throughout the graph.

Contributed by Geoff Vasil & Keaton Burns

### Three Shocks

Three different shocks with similar equations. All three cases have the same initial conditions and are simulated on periodic intervals. The equations differ only in the way they regularize sharp features. The Burgers equation uses dissipation. The KdV equation uses dispersion. The Benjamin-Ono equation uses a different kind of non-local dispersion involving the Hilbert transform (H). The comparison shows that small changes in the way a system accounts for small scales can have large qualitative consequences.

Contributed by Geoff Vasil

### Compressible Convection in Dedalus + Athena

2D compressible convection simulation, in which the top half of the box is simulated using the Athena code (https://trac.princeton.edu/Athena/), and the bottom half of the box is simulated using Dedalus.

The smooth features in the image demonstrate the two codes, using very different numerical techniques, can be stitched together to run a single simulation.

Contributed by Daniel Lecoanet

### Internal Wave Beams

Internal waves generated in 2D Boussinesq hydrodynamics. The domain is the cross section of a cylindrical annulus lying horizontally, so the r-theta plane is a remapping of the x-z plane. Plotted is the perturbation to the buoyancy, around a constant, stably-stratified background. The inner and outer cylinders are no-slip. The outer buoyancy is fixed to the background, but the inner buoyancy includes oscillatory heating (oscillatory in time, constant around the cylinder) at fixed frequency, resulting in thermally-forced IGWs radiating from the cylinder. An interesting thing about this plot is that it shows the non-specular reflection of IGWs off of boundaries: the reflected waves maintain their angle with respect to the vertical (direction of gravity), and not their angle with respect to the wall.

Contributed by Keaton Burns

### Spiral-Defect Chaos

A planform view of the vertically-integrated buoyancy perturbation in 3D Rayleigh-Benard convection. The horizontal dimensions (x,y) are discretized using parity bases to enforce stress-free boundary conditions on the side walls (notice how the rolls preferentially align perpendicular to the walls). The vertical dimension (z) is discretized using Chebyshev polynomials with no-slip boundary conditions. This run is between the intermittent and full spiral-defect chaos regimes of Rayleigh-Benard convection.

Contributed by Keaton Burns

### A Falling Stone

A solid ellipse falling through it's own wake in a 2D periodic domain. The fluid is incompressible. The solid object is incorporated using the volume-penalization method, where fluid within a masked region is forced to match the solid-body rotation of the object, and the resulting fluid stresses on the object are used to evolve ODEs for the position and orientation of the mask.

Contributed by Geoff Vasil

### Compressible Kelvin-Helmholz Instability

2D compressible Kelvin-Helmholtz simulation at Re=10^{6}.

### Radiative/convective interfaces

Internal wave generation by convection in a water-like fluid.